NIWA

Taihoro Nukurangi

Climate, Freshwater & Ocean Science



Regional Downscaling of Climate Data using
Deep Learning and Applications for Drought
/ Rainfall Forecasting

yleelesh Rampal, Abha Sood, Stephen Stuart, Maxime Rio and Alexander @/’
etzer

eResearch New Zealand Conference 2021
NIWA

Climate, Freshwater & Ocean Science Taihoro Nukurangi



What are General Circulation Models (GCMs)?

* GCMs are computer models that try to T

. . . . (Latitude-Longitude) |~ <
physically simulate the climate and all its

of processes at 100 — 200 km resolution. ring P |

* Even with today’s fastest computers, an
ideal model that can resolve processes
such as clouds is computationally
impossible.
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Figure 1: An illustration of the grid for which
the computer model is run on (from NOAA).
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What are General Circulation Models (GCMs)?

* Small scale processes are represented by
parameterizations or relationships (often
statistical).

 GCMs aren’t perfect; they are flawed
mostly due to poor representation of
resolution dependent processes (e.g.,
clouds, convection).
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Figure 2: An illustration of the

variety of different processes @\ NIWA

parameterized in a GCM (From
Le Treut et al., 2007).
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Global average surface temperature change
(a) (relative to 1986-2005) Mean over

Why are GCMs useful? e

* GCM can simulate changes in climate as a
result of "slow" changes in external :
forcing's (e.g., Greenhouse gases) [ P

* Projections of climate have important ® elative 0 1986-2005) e e
implications on policy making (e.g., -
setting emission reduction targets),
insurance, businesses etc. ] i
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 GCMs are dynamically downscaled _ _
through a Regional Climate Model (RCM) w  ws o

to provide localized climate projections. Figure 3: Projected

temperature and sea-level @/’ NIWA
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What is Dynamical Downscaling?

Global Ciavulation Model
tesolu m 2 HadCM3

* “Downscaling” techniques follow two R —— ,
complementary approaches — statistical _.,.vmﬁﬁiﬁﬁ‘%%ﬁ‘i%i?;m,
and dynamical. |

Statistical techniques use relationships
between resolved GCM large-scale
climate patterns and observed local

Regional Climate Model
resolution., ¢.g. RegCM3 25
= 23 km

TW'?‘“

climate responses.
Dynamical techniques use high resolution Sagni i
regional simulations to dynamically PRE
extrapolate the effects of large-scale
climate processes. | | |

Figure 4: An illustration of

the steps required to
Climate, Freshwater & Ocean Science downscale climate Change @/’ nl!wn

projections (NOAA).



Limitations of Dynamical Downscaling?

i

.r)

* Biases from GCMs can propagate ; -
through the RCM.

 Computationally very expensive.

* Locally processes are still not
resolved (winds over complex
terrain) and lead to new biases.

Figure 5: Super-resolution climate

model downscaling using Machine j NIWA
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A Vision for Numerical Weather Prediction and GCM

The grand challenge is to produce reliable high-resolution data for studying climate

change impacts Data
Using a blend physics-based model ' 1 oy
Physics- Data-
and data-based model to el SR prediction

downscaled high resolution RCM |
and GCM outputs.

Data-based models will learn to
account for GCM biases and
provide physically consistent,
accurate and high-resolution

projections. N\
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Figure 6: A flow diagram of a hybrid machine learning
and data-driven pipeline (from Karpatne et al., 2018).



A Vision for Numerical Weather Prediction and GCM

Removing the “black box” of
machine learning by incorporating
physics-based constraints (increasing
interpretability).

Surface

ia 5 20 25 a0

Depth A Predicted o _ Predicted
® Temperature A Density A (p,)

Depth B Predicted . Pre.dlcted
Temperature B Density B (pg)

Physical inconsistency occurs if
argmin  Loss(Y,Y) + X\ R(f) + Apuy Loss.PHY (Y) Bottom Pa P
I S ~ 2 ~ .

Typical loss function Physical Inconsistency

Figure 7: An illustration of how to incorporate a physics-
based loss function into a model (left), and an illustration
of how to assess physical inconsistency (right). Figure

from (from Karpatne et al., 2018)
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Example Case Studies

e Super-resolution satellite imagery

 Lightning Forecasts from NWP
outputs.

e Location-based rainfall downscaling.
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Producing High Resolution Cloud
fields

* Training a Pre-trained UNET model
(using transfer-learning) to reconstruct a
blurred satellite image.

* Using physics-based metrics to assess
physical consistency of the reproduced
fields (e.g., sub-pixel heterogeneity, 2D
Fourier Transform).

* Training: 2000 MODIS satellite images -
200 pixels (km) by 200 pixels (km).

* Methodology adapted from Hu et al,,
2019
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Figure 8: Super-resolution image
reconstruction using UNET
(data from Rampal, N. and Davies, R., 2020)



Producing accurate Lightning Forecasts

* |nputs: Forecasts of a variety

of variables (e.g., humidity,
divergence, temperature).

e Qutputs: Lightning Risk for a

given time window.
Training:

e 3 years of forecast data and
observations (once daily)
hours lead time.

* 4 times the accuracy over
modelled lightning!
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lightning forecast (top), an
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forecast (bottom).
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An Experimental Pipeline for Rainfall Downscaling (NeSl consultancy)

e Using a wide variety of climate predictors / indices (lagged 96 months) to
predict the monthly rainfall anomaly at a single site.

* A wide variety of models (e.g., CNNs, MLPs, Linear Regression) were trained
simultaneously using a Snakemake pipeline developed by NeSl.

* The pipeline enabled us to become more efficient with our workflows and
expe riments. Click to add text
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An Experimental Pipeline for Rainfall Downscaling (NeSl consultancy)

* Regularized MLP models
significantly outperformed
all other models.

* The regularized MLP
model explained over 50%
of the variance in rainfall.

 Other models only
explained between 10 -15
% of the variance in
rainfall.
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Figure 11: An example rainfall hindcast using a regularized MLP model,
results are compared to a linear baseline.
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Where to Next?

* Two-Dimensional downscaling of
climate data using GANSs.

e Exploring Convolutional LSTM to

capture spatio-temporal relationships.
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Normalised Precipitation Anomally

Precipitation Hindcasts for Auckland Aero AWS (3-month)
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Figure 12: A 2020 drought
hindcast for Auckland.
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Thank You!
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