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What are General Circulation Models (GCMs)?

• GCMs are computer models that try to
physically simulate the climate and all its 
of processes at 100 – 200 km resolution.

• Even with today’s fastest computers, an 
ideal model that can resolve processes 
such as clouds is computationally 
impossible.  

3

Figure 1: An illustration of the grid for which 
the computer model is run on (from NOAA).



What are General Circulation Models (GCMs)?

• Small scale processes are represented by 
parameterizations or relationships (often 
statistical).

• GCMs aren’t perfect; they are flawed 
mostly due to poor representation of 
resolution dependent processes (e.g., 
clouds, convection).
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Figure 2: An illustration of the 
variety of different processes 
parameterized in a GCM (From 
Le Treut et al., 2007).



Why are GCMs useful?

• GCM can simulate changes in climate as a 
result of "slow" changes in external 
forcing's (e.g., Greenhouse gases)

• Projections of climate have important 
implications on policy making (e.g., 
setting emission reduction targets), 
insurance, businesses etc.

• GCMs are dynamically downscaled 
through a Regional Climate Model (RCM) 
to provide localized climate projections.
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Figure 3: Projected 
temperature and sea-level 
change for a variety of RCP 
scenarios (from IPCC).



What is Dynamical Downscaling?

• “Downscaling” techniques follow two 
complementary approaches – statistical 
and dynamical.

• Statistical techniques use relationships 
between resolved GCM large-scale 
climate patterns and observed local 
climate responses.

• Dynamical techniques use high resolution 
regional simulations to dynamically 
extrapolate the effects of large-scale 
climate processes.
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Figure 4: An illustration of 
the steps required to 
downscale climate change 
projections (NOAA).



Limitations of Dynamical Downscaling?

• Biases from GCMs can propagate 
through the RCM.

• Computationally very expensive.

• Locally processes are still not 
resolved (winds over complex 
terrain) and lead to new biases.
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Figure 5: Super-resolution climate 
model downscaling using Machine 
Learning (NOAA).



A Vision for Numerical Weather Prediction and GCM

• Using a blend physics-based model 
and data-based model to 
downscaled high resolution RCM 
and GCM outputs.

• Data-based models will learn to 
account for GCM biases and 
provide physically consistent, 
accurate and high-resolution 
projections.

8

The grand challenge is to produce reliable high-resolution data for studying climate 
change impacts 

Figure 6: A flow diagram of a hybrid machine learning 
and data-driven pipeline (from Karpatne et al., 2018).



A Vision for Numerical Weather Prediction and GCM

• Removing the “black box” of 
machine learning by incorporating 
physics-based constraints (increasing 
interpretability). 
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Figure 7: An illustration of how to incorporate a physics-
based loss function into a model (left), and an illustration 
of how to assess physical inconsistency (right). Figure 
from (from Karpatne et al., 2018)



Example Case Studies 
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• Super-resolution satellite imagery

• Lightning Forecasts from NWP 
outputs.

• Location-based rainfall downscaling. 



Producing High Resolution Cloud 
fields
• Training a Pre-trained UNET model 

(using transfer-learning) to reconstruct a 
blurred satellite image. 

• Using physics-based metrics to assess 
physical consistency of the reproduced 
fields (e.g., sub-pixel heterogeneity, 2D 
Fourier Transform).

• Training: 2000 MODIS satellite images -
200 pixels (km) by 200 pixels (km).

• Methodology adapted from Hu et al., 
2019
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Figure 8: Super-resolution image 
reconstruction using UNET 
(data from Rampal, N. and Davies, R., 2020)



Producing accurate Lightning Forecasts

• Inputs: Forecasts of a variety 
of variables (e.g., humidity, 
divergence, temperature).

• Outputs: Lightning Risk for a 
given time window.

Training:

• 3 years of forecast data and 
observations (once daily) – 48 
hours lead time.

• 4 times the accuracy over 
modelled lightning!
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Figure 9: Bottle neck 
architecture used for AI 
lightning forecast (top), an 
illustration of a lightning 
forecast (bottom).



An Experimental Pipeline for Rainfall Downscaling (NeSI consultancy)

• Using a wide variety of climate predictors / indices (lagged 96 months) to 
predict the monthly rainfall anomaly at a single site. 

• A wide variety of models (e.g., CNNs, MLPs, Linear Regression) were trained 
simultaneously using a Snakemake pipeline developed by NeSI.

• The pipeline enabled us to become more efficient with our workflows and 
experiments.
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Figure 10: Model scores/metrics 
from the Snakemake pipeline.



An Experimental Pipeline for Rainfall Downscaling (NeSI consultancy)
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• Regularized MLP models 
significantly outperformed 
all other models. 

• The regularized MLP 
model explained over 50% 
of the variance in rainfall.

• Other models only 
explained between 10 -15 
% of the variance in 
rainfall.

Figure 11: An example rainfall hindcast using a regularized MLP model, 
results are compared to a linear baseline.



Where to Next? 

• Two-Dimensional downscaling of 
climate data using GANs.

• Exploring Convolutional LSTM to 
capture spatio-temporal relationships. 
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Figure 12: A 2020 drought 
hindcast for Auckland.



Thank You!
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