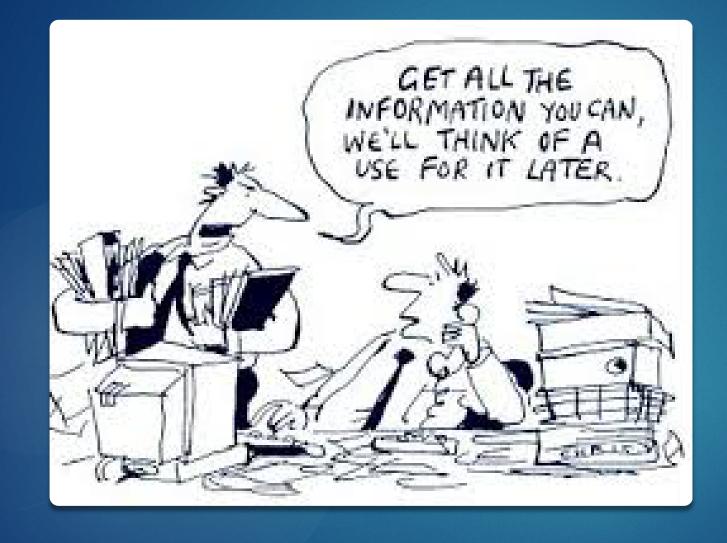


Deep Learning in a Clinical Context: School of Medicine & Health Sci Regional Downscaling of Climate Data Using Deep Learning and Applications for prought (Rainfall' Forecasting

NATHAN RUSSELL (1ST YEAR PHD STUDENT)



Clinical Data Overload

"Big Data" keeps getting "Bigger"

- "Big data" is a dataset with a large number of attributes
- Clinical data is a major source of "Big data"
- ▶ The amount of collected information is continuing to grow.

If this data isn't utilised, then it is being collected and stored at an unnecessary cost.

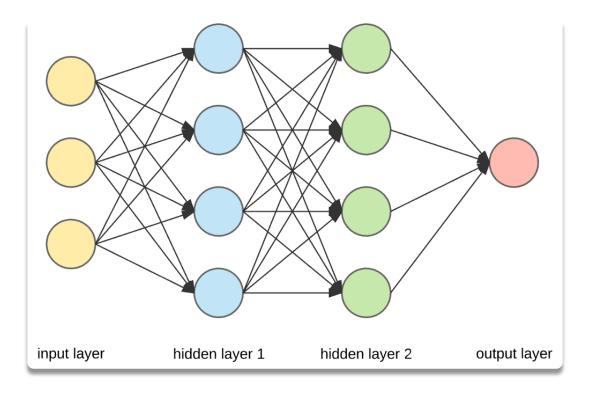
Machine Learning in 60secs (Sorry no robots here)

"The Four Ingredients of Machine Learning"

- T) A task to solve
- M) A performance metric
- P) A computer program
- E) A source of experience

Deep Learning: Neural Networks are Onions?

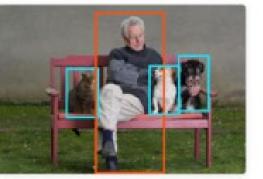
WELL NO... BUT THEY BOTH HAVE LAYERS!



ERNZ Nathan Russell 2021

PERSON, CAT, DOG

(A) Classification

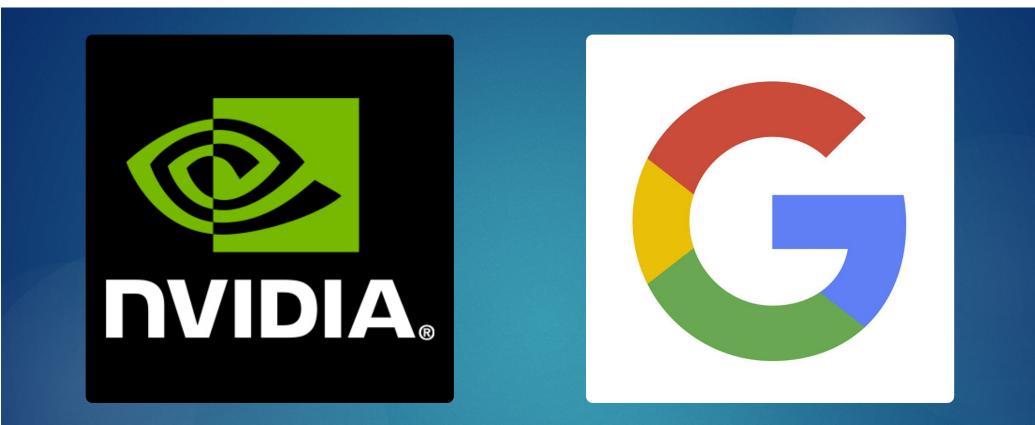


(B) Detection

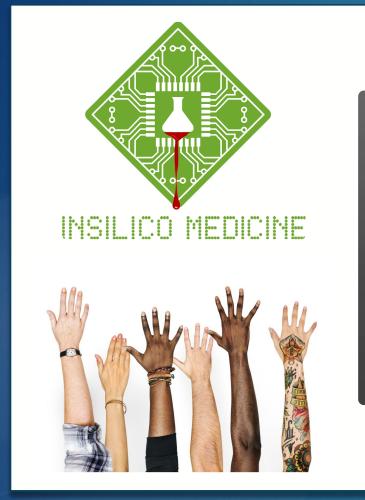
(C) Segmention

Image Segmentation

ERNZ Nathan Russell 2021



Deep Learning in Healthcare



Deep Learning Models and Diverse Populations

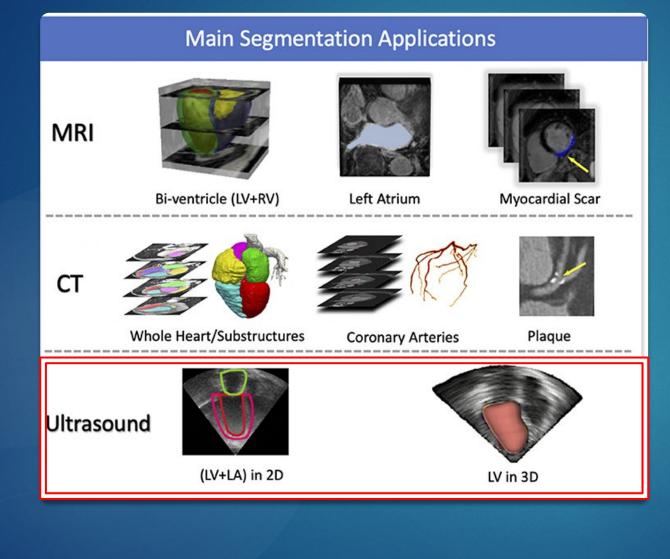
PhD Aims

To aid the development of tools and pipelines that facilitate improved data processing and analysis.

To develop tools interfaces for data exploration and visualisation, for integration in a medical decision-making framework.

Ensure developed tools are accessibly designed and clinician friendly as possible whilst maintaining research capabilities.

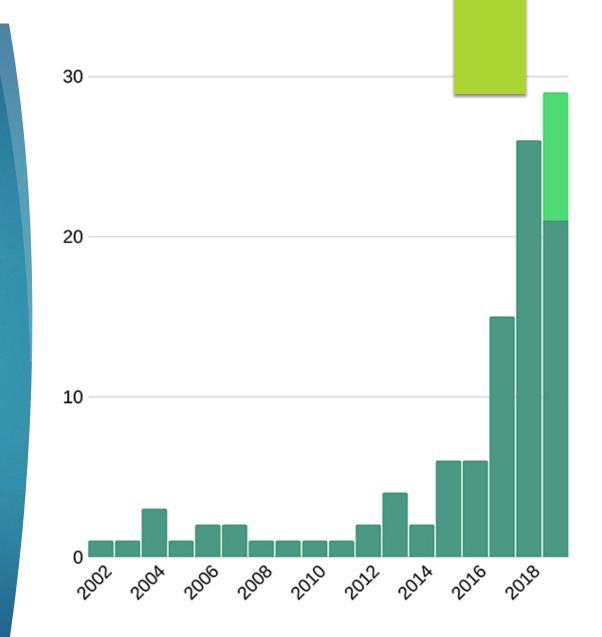
Improving the Clinical Decision-Making Process Through implementation of Deep Learning Tools for "Big Data" Integration, Analysis and Visualisation



Our Starting Point

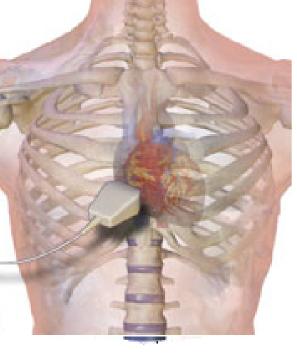
Cardiac Imaging and Machine Learning in Publication

The number of publications on machine learning and cardiac imaging per year.

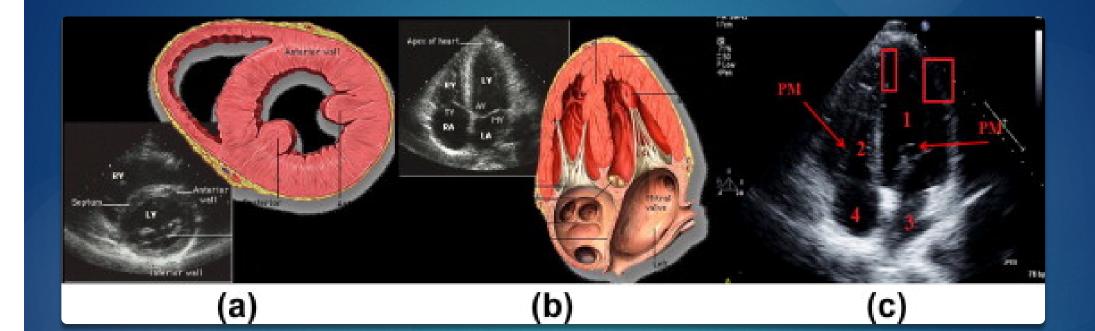


Echocardiogram

An echocardiogram uses sound waves to produce an image of the heart



Echocardiogram 101



Echocardiogram 101

ERNZ Nathan Russell 2021

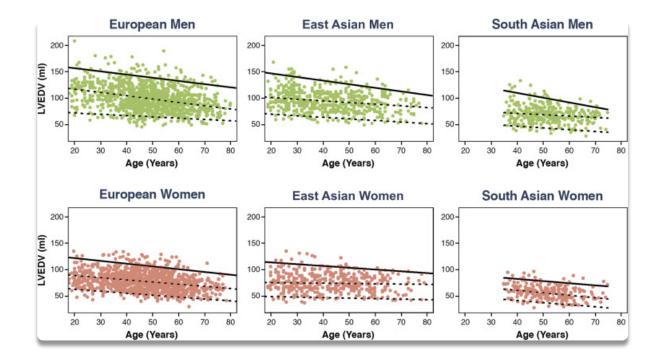
Existing Models

View classification

- Madani, A., Arnaout, R., Mofrad, M. et al. Fast and accurate view classification of echocardiograms using deep learning. npj Digital Med 1, 6 (2018).
- Pathology identification
 - Madani, A., Ong, J.R., Tibrewal, A. et al. Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease. npj Digital Med 1, 59 (2018).
- Risk prediction
 - Kwon, Joon-myoung, et al. "Deep learning for predicting in- mortality among heart disease patients hospitalbased on echocardiography." Echocardiography 36.2 (2019): 213-218.

Evidence of Ethnic Variation in Heart Parameters

The ECHOnormal Study (2015)



	Caucasian	African	Hispanic	Asian	Native	р
	n=17,342	American n=1,676	n=156	n=720	American n=64	
Demographics						
Age	50.5±15.5	44.0±15.2*	44.4±13.8*	46.5±14.5*	48.1±13.6*	< 0.001
Female gender	55.6%	65.4%*	75.6%*	57.8%	56.3%	< 0.001
3SA (m2)	1.9±0.3*	2.0±0.3*	1.8±0.2*	1.7±0.2*	2.0±0.3	< 0.001
Dimensions (mm	n) or Mass (gr	n)				
LV End- Diastolic Diameter	46.9±5.5	46.4±5.5*	45.7±5.1	44.7±4.7*	48.0±6.4	<0.001
.V End-Systolic Diameter	30.1±5.2	29.6±5.2*	28.8±4.6*	28.5±4.6*	30.2±6.0	<0.001
nterventricular Septum	9.2±2.3	9.7±2.5*	8.7±1.6	8.5±1.8*	9.7±2.0	<0.001
Posterior Wall	9.0±1.7	9.5±2.0*	8.8±1.6	8.3±1.4*	9.3±1.8	< 0.001
V Mass	147.9±51.8	156.0±58.2*	133.3±42.8*	121.7±37.8*	163.6±62.0	< 0.001
eft Atrial Diameter	36.8±6.7	36.0±6.1	35.2±6.3*	33.8±5.6*	38.1±8.0	<0.001
Dimensions (mm	n/m2) or Mas	s (gm/m2) ind	exed to BSA			
.V End- Diastolic Diameter/BSA	24.6±3.3	23.8±3.3*	25.4±3.0*	26.2±3.3*	24.8±3.2	<0.001
V End-Systolic Diameter/BSA	15.8±2.9	15.2±2.9*	16.0±2.7	16.7±3.0*	15.6±2.7	<0.001
nterventricular Septum/BSA	4.8±1.1	5.0±1.3*	4.8±0.8	5.0±1.0*	5.0±1.0	<0.001
Posterior Wall/BSA	4.7±0.9	4.9±1.0*	4.9±0.8	4.9±0.9*	4.85±0.9	<0.001
V Mass/BSA	75.9±22.3	78.8±25.6*	73.0±19.4	70.5±19.5*	82.9±26.3	< 0.001
eft Atrial Diameter/BSA	19.2±3.1	18.4±3.0*	19.4±3.1	19.8±3.2*	19.6±4.0	<0.001
hannetery bar						

Evidence of Ethnic Variation in Heart Parameters

*p<0.05 vs. Caucasian race. BSA, body surface area; LV, left ventricle.

Ethnicity is Associated With Differences in Left Heart Dimensions on Echocardiography. (2018)

Our Project

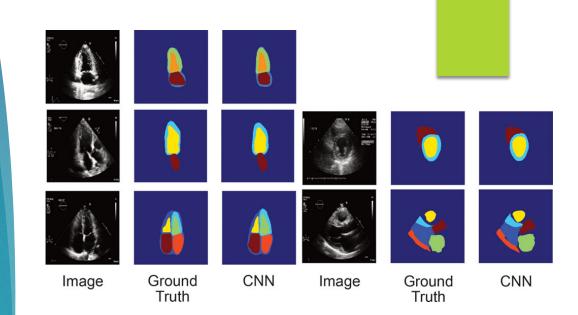
We propose the development of suitable convolutional neural network architecture from current models in order to allow for identification of ethnicity specific features within echocardiograms

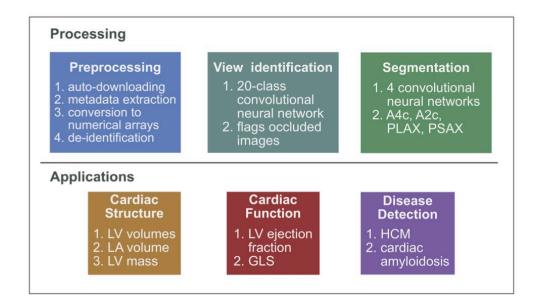
- Data from Wellington Hospital Cardiology Dept.
- A model representative of New Zealand's ethnic diversity
- Research is lacking in the area of variation in echocardiograms of people of a pacific island ethnicity

Our Progress: EchoCV (adapting)

"EchoCV": A Web-Based Fully Automated Echocardiogram Interpretation System (2017)

- Deep Learning group UCSF
 - Uses VGG Neural Network
 Architecture for image classification
 - A CNN based on the U-net architecture for image segmentation
 - View classification, segmentation and disease detection.
 - Written using Python 2.7

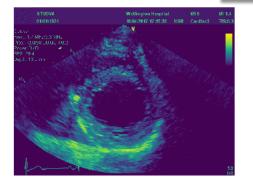




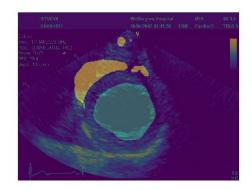
Our Progress: EchoCV:

NeSI consultancy

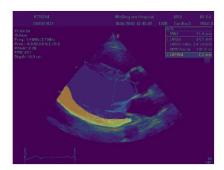
- Successfully enabled GPU recognition
- Using Nesi Mahuika GPUs: P100s
- Added additional customization options for segmentation and classification
- Begun analysis on images from Wellington hospital
 - Implementing a preprocessing pipeline

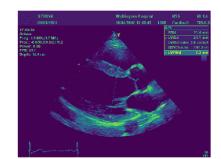


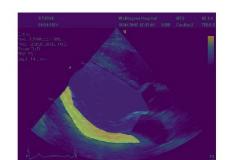
PSAX View

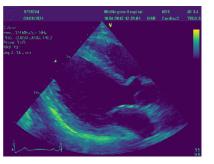


An Example of Our Images (PLAX)







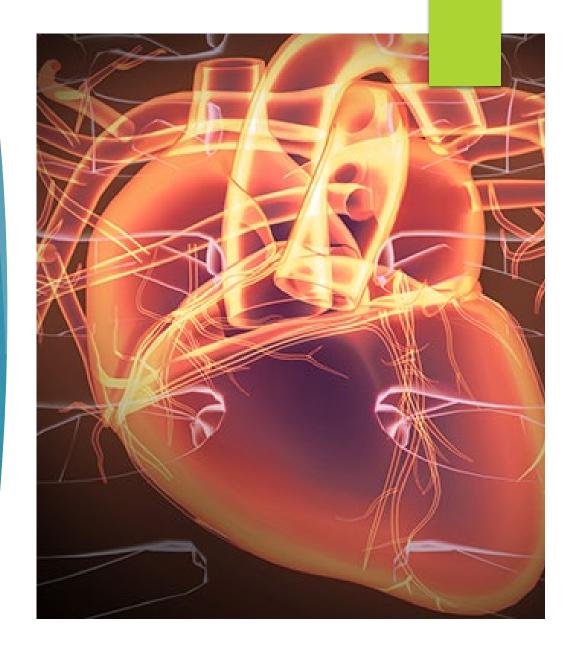


ERNZ Nathan Russell 2021

Precision Medicine (The Future)

- The ambition of precision medicine is to design and optimize the pathway for diagnosis, therapeutic intervention, and prognosis.
- This offers clinicians the opportunity to more carefully tailor early interventions.

Taking advantage of high performance computer capabilities, using deep learning models and embracing diversity in these models allows for a individualised course of care.



Acknowledgements

Supervisory Team:

- Associate Professor Mik Black (University of Otago)
- Dr Miles Benton (ESR)
- Associate Professor Peter Larsen (University of Otago & Wellington Hospital)
- Advisory Role:
 - Dr Donia Macarteny-Coxson (ESR)
- NeSI Consultancy:
 - Maxime Rio
 - Dinindu Senanayake

E/**S**/**R** Science for Communities



Thank You

References (in order of appearance)

- Martin-Isla, C., Campello, V. M., Izquierdo, C., Raisi-Estabragh, Z., Baeßler, B., Petersen, S. E., & Lekadir, K. (2020). Image-based cardiac diagnosis with machine learning: a review. Frontiers in cardiovascular medicine, 7, 1.
- Sengupta, P. P., & Adjeroh, D. A. (2018). Will artificial intelligence replace the human echocardiographer? Clinical considerations.
- EchoNoRMAL (Echocardiographic Normal Ranges Meta-Analysis of the Left Heart) Collaboration. (2015). Ethnicspecific normative reference values for echocardiographic LA and LV size, LV mass, and systolic function: the EchoNoRMAL study. JACC: Cardiovascular Imaging, 8(6), 656-665.
- LaBounty, T. M., Bach, D. S., Bossone, E., & Kolias, T. J. (2017). Race is Associated With Differences in Left Heart Dimensions on Echocardiography. Circulation, 136(suppl_1), A15955-A15955.
- Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning.