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Overview of project

▪ Masters project with the Placenta 
Modelling Group at the Auckland 
Bioengineering Institute

▪ Historical data set of uterine samples 
at varying gestations have been 
digitised 

▪ Project outcomes: 

• Samples have been recreated into 
3D reconstruction

• Segmentation of key tissue types 

2



Why is this work important?

▪ One of the least understood organs in 
the human body

• Mostly qualitative  

• Animal models or low resolution 
non-invasive imagery insufficient

▪ Fetal conditions are not well 
understood

• e.g. Fetal Growth Restriction (FGR) 
is poorly diagnosed during 
pregnancy

▪ Visualisation is key to quantitatively 
describing the uterine vasculature 3J. L. Joana, L. W. Chamley and R. A. Clark, “Feeding Your Baby In Utero: How the 

Uteroplacental Circulation Impacts Pregnancy,” Physiology, vol. 32, pp. 234-245, 2017.



Registration 

▪ Features exhibit large linear and 
nonlinear deformations

• Linear registration minimises 
translation and rotation errors

• Non-linear registration is the 
abstract correction of visual 
continuity

▪ Key to alignment is how you measure 
sample deformations
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Linear Registration, Feature finding

▪ Features represent the most robust 
method for identifying the relative 
positions of the samples 

▪ Feature finding performed by SIFT in 
particular to rotation invariance []

▪ Naive SIFT is not useful or intuitive

▪ “Spatial cohesiveness” is finding 
features which are biologically relevant

5



Linear Registration, Feature finding

▪ Manual feature identification is 
considered “gold standard”, however 
very slow and high variability

▪ Codified the process of manually 
finding features: find prominent feature 
first and use those to find other 
features

▪ Multi-resolution feature search using 
low res/high strength features to 
initiate feature searching
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Linear Registration

▪ Linear registration minimises rotation 
and translation of the features

▪ Performed using 
scipy.optimise.minimize

▪ If not below threshold, features of 
highest error removed and repeated

while True:
featureTran = translate(features)
featureMod = rotate(featureTran)
err = errorPerFeature(FeatureMod)
if err < threshold:

break
else:

features = 
(f t )
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NL Registration, Feature tracking

▪ Finding spatially cohesive features as well as visually similar features

▪ Uses Phase Cross-Correlation to minimise the visual differences
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NL Registration, Feature tracking
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▪ The features are tracked through the 
entire specimen

▪ Spatial cohesion is checked at each 
sample 

▪ Feature stops when no longer spatially 
cohesive



NL Registration, Feature selection 

▪ Features are selected to ensure spread 
of features is sufficient for non-linear 
deformations (next step)

▪ Feature selection is determined by:

• Ensuring there is space between 
the possible features

• Prioritising either their length or 
smoothness 

▪ Missing samples are interpolated 
between features
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NL Registration, Feature smoothing

▪ Features in tissue progress smoothly 
(analogue)

▪ Features in digitised samples are 
discrete and sometimes non-
continuous due to deformations

▪ Trajectory of samples is smoothed by a 
3D cubic B-spline
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NL Registration, success

▪ Tissue with the smoothed feature 
trajectories, we can compensate for 
non-linear deformations

▪ Helps to create more biologically 
realistic visualisation

▪ Implemented by 
tensorflow_addons.image.sparse_imag
e_warp
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NL Registration, unsuccessful

▪ Works well for small deformations 
which are well-spaced apart

▪ Feature selection reduces the 
occurrence of “impossible” 
deformations

▪ Causes may be:

• Incorrect feature tracking

• Smoothing creates impossible 
situations

• Interpolations are not constrained 
properly
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Full registration
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Segmentation

▪ Training data created by the tracked 
features already made

two for the price of one

▪ Key tissue types: myometrium, 
decidua and villous tree

▪ Model created with imagenet pre-
trained, Resnet101 network

▪ Similar results between models
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Future work

▪ Segmentions with 3D convolutions

• More accurate tissue type segmentation

• Segment out the smaller structures 

▪ Improved nonlinear deformations
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Thank you for listening

Any questions?
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Specimen Extraction

▪ Samples are presented in their tissue blocks, 
often with multiple samples per block

▪ Isolating samples critical for further processing
a. Differentiate background from foreground
b. Identify individual sample positions
c. Extract individual samples
d. Normalise colours
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Colour correction

▪ Stains represent different cell 
structures

▪ Multiple stains used, hard to visualise 
and process stacked samples

▪ Normalise the colour distributions of 
each channel relative to a reference 
sample

▪ This method creates visual consistency 
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