

Challenges and opportunities in timely and efficient delivery of IT for eResearch projects

- Lahiru Ariyasinghe and David Eyers
- eResearch NZ 2020

Motivation for this presentation

- The University of Otago is undergoing an internal restructuring that includes IT and eResearch support
- UoO should enjoy improved eResearch potential
 - ... but there are risks involving complex stakeholder groups
 - Many departments are losing local technical support
 - Transitions so far have emphasised capability over timeliness
- We want to share thoughts on opportunities and risks

An approximate definition of 'eResearch'

eResearch covers a spectrum spanning two extremes:

- Big ticket items—direct impact; narrow scope
 - Equipment—e.g., HPC; large-scale storage; custom hardware
 - Funded projects—e.g., HPC provisioned in a Marsden Grant
 - 'Superstar' researchers—justifying support expenses is easy
- Overall capability lift—indirect impact; broad scope
 - The Carpentries (Software, Data, Library)
- Efficiency of research management software and systems Challenges & opportunities in timely & efficient delivery of IT for eResearch projects—eRNZ 2020

Challenges seen in UoO eResearch projects

- Challenges involving funding:
 - Projects may face costs outside the scope of research grants
 - Capital expenditure versus operating expenditure
 - DIY clusters (CapEx) versus cloud computing (OpEx)
- Challenges involving personal expectations:
 - Academics and professional staff have very different routines
 - Academics may underestimate technical difficulty
 - Professional staff may overestimate academic responsiveness

Challenges seen in UoO eResearch projects

- Project management challenges:
 - Estimation of projects' timelines
 - Estimation of response times for resolving IT issues encountered
 - Tracking issues across different teams—e.g., across departmental and central IT, researchers, NRENs, etc.
 - Prioritisation and opportunity costs—e.g. the mechanisms that can support escalation of issues in an efficient manner
- Sustainability: support after grant funding finishes...
 - Different severities, e.g., no maintenance versus vanishing

Developments: cloud computing

- Cloud computing can perform eResearch off campus
 - University infrastructure and IT not on researchers' critical path
 - University IT + NRENs can provide cloud tenancies
 - University IT cloud bursting hybrid services an even better option
 - Technology on offer is increasingly HPC-like: InfiniBand, GPUs...
 - Generous grants for academic research and teaching
- There are plenty of technical challenges and risks:
 - Data migration—transfer speeds / latency
 - Jurisdictional concerts—data sovereignty

Developments: desktop supercomputing

- Cloud is centralising but other trends are decentralising
 - Has been a perpetual pendulum in terms of technology
- GPGPUs: Machine learning / Al workloads
 - Gravitating to devices on researchers' computers
 - Fiddly to manage as HPC, since devices don't share well
 - May be freely available to academics (!)
- Data processing: shift to streaming data processing

Developments: DevOps tooling

- DevOps tooling for reproducible research: e.g.,
 - Containers (Docker, Singularity, etc.) capture software envs.
 - Researchers take a central role in software they develop / use
 - Infrastructure as Code (IaC) helps snapshot deployment needs
- Difficulties: ridiculously high pace of change in tools and only emerging methodologies for sustainability
 - Promise: e.g., Kubernetes leading container orchestration tools

Developments: delegated administration

- More university systems are offering self-service
 - (Still pales in comparison to workflows online in the cloud.)
 - ...arguably compliance within Uni. sector uniquely challenging
 - Difficult to manage information that staff need to know
 - Staff often have high autonomy: hard to train and manage
- Better availability of APIs is emerging
 - Commercial vendors pressed by common practice
 - ... although many older University systems lack APIs

Research Software Engineers (RSEs)

- RSEs span University IT and research groups
 - Key to embed staff to ensure responsive project progress
 - Documenting all requests to central org. unit? Slow and expensive!
 - Needs a career path: not a rolling sequence of contracts
 - Currently do not have an official job title or role at UoO
 - High potential for UoO research groups to pool resources
 - Existing UoO 'RSEs' are often successful postdoc researchers too
- For efficiency, need to trust RSEs, and IT-authorise them
 - ... although given limited central IT resources, how to prioritise?

Assessing potential eResearch success

- eResearch resources (all types) are limited:
 - thus want evidence-based, accountable resource allocation
 - ... and appreciate that approach will evolve dynamically
 - Centralisation helps enumerate projects
 - ... but understanding their edges is difficult—complex environment
- Need shared methodologies for cost estimations:
 - Weight against estimated impact?
 - Points system to prioritise and effect sharing?
 - e.g., to balance peaks in need against average needs

Changes at University of Otago

- UoO ITS gaining a new unit for research & teaching IT
 - Planned to link to existing UoO eResearch advocacy groups
 - ... plus push to centrally coordinate dept. research IT
- UoO University Library's Research Support Unit
 - changing role of libraries within university research
- UoO ITS investigating cloud tenancies
 - Research and teaching can be added to admin transitions

Conclusion ... to be continued?

- IT restructuring at UoO will affect eResearch activities:
 - combined with Cloud + DevOps tools + RSEs, future is bright
 - ... but there are risks to timely delivery of IT needs to RSEs
- Some UoO shadow IT is being moved into central ITS
 - ... but original need must be addressed or shadow IT will return
- Feedback and other thoughts are invited!