
Data Pipelines and Prisms
Talk Outline

Case study: A misbehaving pipeline

Data Representation is A Thing !

Semantic and Non-Semantic Data Representation are different things

A Data Prisms project: Express data representations at a high level of abstraction; compute

them robustly; deliver hypothesis-neutral synoptic views of data structures

Engineering notes (call-backs, make, meta-scheduler, semantic file-naming)

Case study conclusion

Contents

Why is this very small bioinformatic computation (fitting together

just 420 small (KB size) bits of fungal DNA sequence)

misbehaving so badly?

• Continued on to try to use over 800 GB RAM and try to crash a
1TB server

• …whereas it really should run perfectly OK on my Galaxy J8 !

Data Representation

(CGATAGT...)

Sequence Quality Filter

C
o

n
ti
g

-i
n

g

Finishing (synteny, stats

summary etc)

DNA assembly pipeline:

Data Representation is A Thing

“To find structure in high-entropy datasets we need to throw away information via

entropy-reducing data representations that simplify the data while preserving

structural features of interest”

McCulloch,A., Jauregui,R., Maclean, P., Ashby, R., Moraga, R., Laugraud A.,Brauning R., Dodds.,K.,

McEwan, J. (2018) An entropy-reducing data representation approach for bioinformatic data, Database, 2018,

1–16

“Although a picture may be worth a thousand words, a good representation of

data is priceless. . . . reduce the statistical complexity of the problem—the amount

of data needed to solve a given statistical task with a given level of confidence—

by approximating the data set by simpler structures”

"Large-Scale Data Representations" (Chapter 5), in National Research Council (2013) Frontiers in Massive

Data Analysis. The National Academies Press Washington, DC.

Semantic Data Representation

(very common in biology and bioinformatics)

Example: Reduce entropy via representing DNA sequences by their top hit in a

database

(There are 4,951,760,157,141,521,099,596,496,896 possible DNA sequences of that length (log2 => 92 bits),

but only 56 million accessions in the database searched (log2 => 26 bits)).

Data Self-information

(bits)

Semantic Representation (top hit in a

BLAST database search)

Self Information

(bits)

TGCAGCCCACCAGGCTCCTCTG

TCCATGGGATTCTCCAGGCAAG

AA

92 XM_012177191.3 PREDICTED: Ovis

aries family with sequence

similarity 180 member A

(FAM180A), mRNA

26

data mean stdev rank

(ordering model i)

bin frequency

(binning model i)

self information

(probability model i)

3.2 3.9 2.1 3 2 0.3

1.8 3.9 2.1 1 1 2.3

6.7 3.9 2.1 5 2 0.3

2.3 3.9 2.1 2 2 0.3

5.5 3.9 2.1 4 2 0.3

Non-Semantic Data Representation

Examples : reduce entropy by representing the data by the group mean, or

standard deviation, or by replacing with ranks, binning frequencies or self-

information (etc. etc. etc.)

A Data Representation Challenge : The Challenge of Primitives

“From the computer systems perspective, it would be very helpful to identify a set of primitive algorithmic tools

that (1) provide a framework to express concisely a broad scope of computations; (2) allow programming at

the appropriate level of abstraction; and (3) are applicable over a wide range of platforms, hiding architecture-

specific details from the users”

"Large-Scale Data Representations" (Chapter 5), in National Research Council (2013) Frontiers in Massive Data Analysis. The National

Academies Press Washington, DC.

(see also - similar “Challenge of Primitives” in visual data representation (i.e. graphics). Hence developments such as

ggplots and ggplots2 packages in R, based on “The Grammar of Graphics”; the wolfram language graphics primitives; etc)

data mean stdev rank

(ordering model i)

bin frequency

(binning model i)

self information

(probability model i)

3.2 3.9 2.1 3 2 0.3

1.8 3.9 2.1 1 1 2.3

6.7 3.9 2.1 5 2 0.3

2.3 3.9 2.1 2 2 0.3

5.5 3.9 2.1 4 2 0.3

A Grammar of Data Representation?

Non-semantic data representation of text (e.g.

sequence data)

Utilitarian primitives ? A Prisms Project

★ Express data representations at a moderately higher level of abstraction

★ Compute them robustly and at scale, without sacrificing provenance

★ Deliver hypothesis-neutral synoptic views of data

★ Caveat: domain-specific, and (although used in “production”), proof-of-concept

A prisms project

Express data representations at a high level of abstraction; compute them robustly and at scale;

deliver hypothesis-neutral synoptic views of data

kmer_prism.sh [-h] [-n] [-d] [-s SAMPLE_RATE] [-p kmeroptions] [-a fasta|fastq] -O outdir [-C

local|slurm] input_file_names

sample_prism.sh [-h] [-n] [-d] [-s SAMPLE_RATE] [-M minimum sample size] [-t minium_tag_count] [

-T maximum_tag_count]

-a sampler -O outdir [-C local|slurm] input_file_names

align_prism.sh [-h] [-n] [-d] [-f] [-j num_threads] [-s SAMPLE_RATE] -a aligner -r [ref name |

file of ref names]

-p [parameters or file of parameters] -O outdir [-C

local|slurm] input_file_names

sequencing_qc_prism.sh [-h] [-n] [-d] [-f] [-C hpctype] [-a analysis] [-s sample rate] -O outdir

input_file_names

demultiplex_prism.sh [-h] [-n] [-d] [-x gbsx|tassel3_qc|tassel3] [-l sample_info] [-e enzymeinfo] -O

outdir input_file_names

genotype_prism.sh [-h] [-n] [-d] [-x KGD_tassel] [-p genotyping parameters] -O outdir folder

gtseq_prism.sh [-h] [-n] [-d] [-s species] [-l locus_info] -O outdir input_file_names

melseq_prism.sh [-h] [-n] [-d] -a analysis -b blast_database [-w wordsize (16)] [-T

blastn|megablast (blastn)] -s similarity (.02)] [-m min_length (40)] [-q min_qual

(20)] [-C local|slurm (slurm)] -O outdir input_file_names

Engineering notes

Call-backs, orchestrated by make, with call-back code utilising a meta-scheduler

★ generate (pseudo) semantic targets, and for each target a call-back script

rumen_sample1.fa.blastn.nt.taskblastnnum_threads4evalue.02.align_prism

(make will call [ditto] .align_prism.sh)

rumen_sample2.fa.blastn.nt.taskblastnnum_threads4evalue.02.align_prism

(make will call [ditto] .align_prism.sh)

★ call-back code utilises meta-scheduler for higher level of abstraction

tardis --hpctype slurm -d tag_blast blastn -db nt -query

_condition_fasta_input_/dataset/GBS_Rumen_Metagenomes/ztmp/melseq_paper_review/tag_blast/rumen_sampl

e1.fa -task blastn -num_threads 4 -evalue .02 \>

_condition_text_output_rumen_sample1.fa.blastn.nt.taskblastnnum_threads4evalue.02.results

Engineering notes

★ Call-backs are orchestrated by make
align_prism main makefile

#***

references:

#***

make:

http://www.gnu.org/software/make/manual/make.html

#

%.align_prism:

$@*.sh

date > $@

★ Targets are built concurrently (make -j N target1 target2 . . .).

The call-back code for each target calls the meta-scheduler which further

parallelises the processing by splitting input files and launching chunks on the

cluster.

★ Provenance is important - i.e. the ability to drill-down to see what’s actually

going on, and if necessary tweak and rerun parts of the job. So the target call-

backs are just shell-scripts and can be run stand-alone

http://www.gnu.org/software/make/manual/make.html

Meta-scheduler notes

● Abstract the details of the underlying grid/computational resource, as well as administrivia such as

uncompression/compression, file-splitting etc.

● But abstraction often means flexibilty and provenance. Assumption: for many users and applications,

the unix command-line is about the right compromise between level-of-abstraction, and flexibility.

● Example: original commands (searching a big file for some patterns, plus administrivia)

gunzip big_file.gz

grep -f big_pattern-file big_file > big_match_file

gzip big_file

gzip big_match_file

● only a single marked-up command is needed to do the above *and* distribute the job over the cluster if using

the meta-scheduler

tardis grep -f big_pattern-file _condition_text_input_big_file.gz > _condition_text_output_big_match_file

A tensorial data representation helped solve the mystery by highlighting a low-

complexity feature in the data (the problem was due to an “exploding graph

structure” – a hugely over-represented short contaminant sequence caused the

graph-based assembly algorithm to create cross-links between almost all

possible pairs of sequences)

Thank you for your time and attention

Thanks to the awesome AgResearch GBS team, and Invermay lab, bioinformatics and stats geniuses, and

many other AgResearch colleagues, on whose coat-tails I’ve ridden. (Any embarrassing errors,

misconceptions, time-wasting and Ig-Nobel-worthiness are most definitely mine alone) !

