

NeSI and your data: Scalable Storage

Fabrice Cantos eResearch NZ 2019

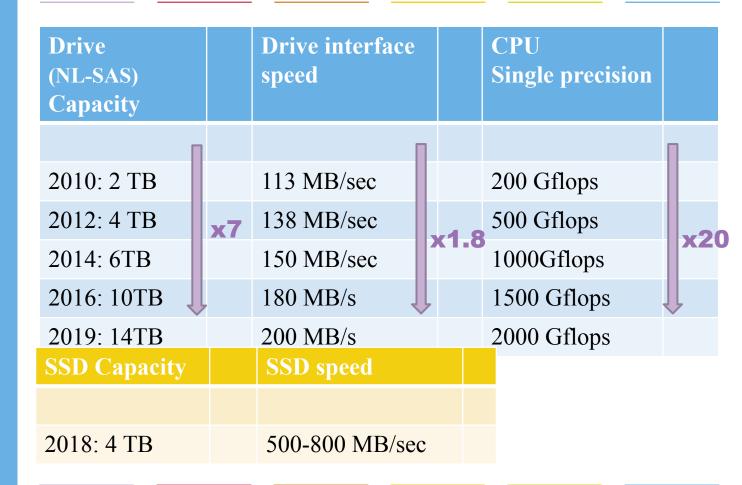
New Zealand eScience Infrastructure

Overview

- 1. I/O System
- 2. NeSI Storage
- 3. Performance measure
- 4. Services & Future

Typical High Performance I/O System

Importance of Storage in HPC

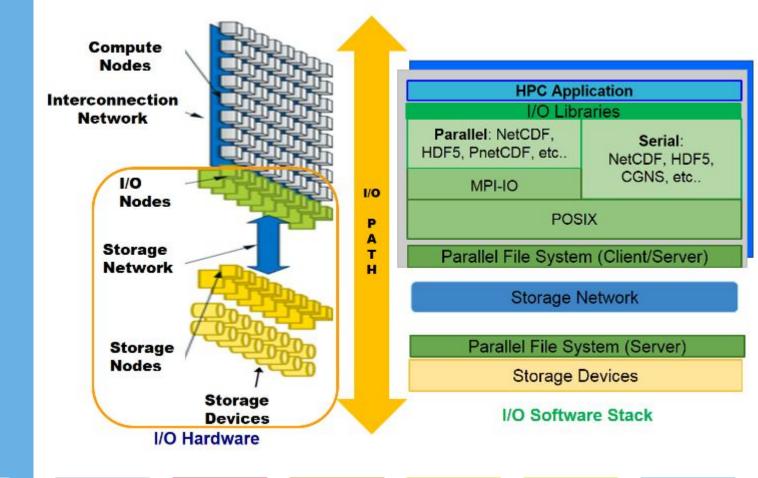

Very few large scale applications of practical importance are NOT data intensive. (Alok Choudhary)

~5 % time spend in IO call vs compute

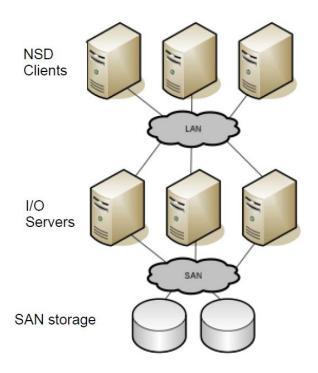
Storage RFP:

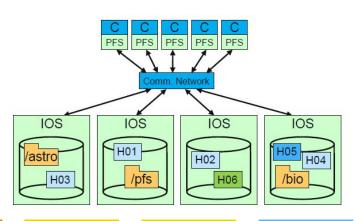
- Capacity
- Speed
- Resilience
- Budget

Moore's law in storage



IOPS


- Block Size ?
- Serial / random?

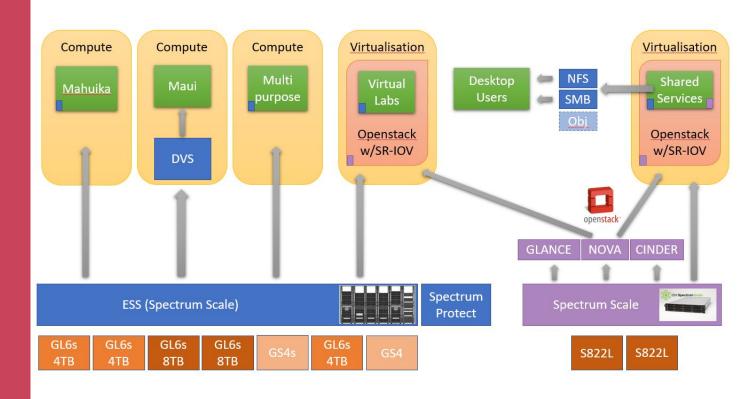

Technology	Latency		
L1 CPU Cache	4 cycles (~1 nsec)	Davisa	IODS
L2 CPU Cache	10 cycles	Device	IOPS
LLC CPU Cache	40 cycles		
DRAM	240 cycles	HDD	100 IOPS
NVRAM	2400 cycles	SSD	~100,000 IOPS
RDMA Read	6K cycles (2 usec)		100,000 101 2
FLASH Read	150K cycles (50 usec)		
FLASH Write	1500K cycles (500 usec)		
HDD Write min	1500K cycles (500 usec)*		
HDD Read min	15000K cycles (5 msec)		
HDD Read max	75000K cycles (25 msec)		
Tape File Access	150000000K cycles (50 sec)		

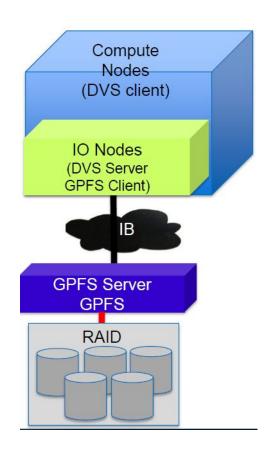
IO System

IBM Spectrum Scale (formerly GPFS)

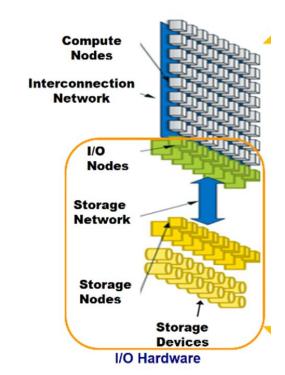
NeSI Storage

HPCF Storage


ESS Building Blocks


Filesystem Capacity

File System	File Set	File Set Size	% of Capacity	% of Bandwidth
/scale_wlg_persistent	/home	200 TB	26%	20%
	/project	2000 TB		
/scale_wlg_nobackup	/nobackup	5400 TB	63%	70%
/scale_wlg_nearline	/nearline	550 TB	7%	10%


NeSI Storage

Maui IO Nodes -Cray DVS

Data Virtualization Service (DVS)

Performance Measures

IO Benchmarks

MDTEST (4KB creates, unique dirs.)/s	156,900		35,766 (23%!)			
	Read	Write	Total	Read	Write	Total
IOR 4KB (GB/s) (Single Stream)	2.1	1.3		0.044 3.2 (w/IOBUF)	0.055 3.2 (w/IOBUF)	
IOR 8MB (GB/s) (Single Stream)	5.1	3.3		2.5	2.3	
IOR (GB/s) (total bandwidth)	59.5	86.7	146.3	63.0	64.0	126.9

Mahuika

Maui (via DVS)

Comparaison with

FitzRoy

Pan

	Pan	FitzRoy	Mahuika	Maui
MDTEST (4KB creates, unique dirs.)/s		9926	156,900	35,766

(GB/s)				
IOR 4KB (Single Stream)		0.150	2.1/1.3	3.2/.3.2 (w/IOBUF!)
IOR 8MB (Single Stream)		1.1/ 1.3	5.1/3.3	2.5/2.3
IOR (total bandwidth)	4	8.1	146.3	126.9

Services

Services

- Snapshot or /home & /nesi/projects
- Quota Management
- Backups for disaster recovery /home & /nesi/projects
- Data Transfer Service (Globus)

Future Work

- Nearline storage with librarian tool
- Replication of filespace with NeSI collaborators
- Data Object service export
- SSD pool for hot pool data
- Read & Write local cache.
- Maui Native GPFS client

NeSI @ eResearch NZ - Talks & Workshops:

Monday 18 Feb

2:10 - 2:30 pm

Understanding research drivers for NZ's advanced research computing

2:30 - 2:50 pm

How NeSI helps Manaaki Whenua - Landcare Research monitor land cover changes

3:30 - 3:50 pm

NeSI Futures

4:30 - 5:30 pm

Training Community BoF

4:50 - 5:10 pm

Catering to domain (Genomics) specific eResearch needs

Tuesday 19 Feb

11:00 - 11:20 am

The NeSI HPC Computer and Data Analytics Service

11:00 am - 12:30 pm

Open Space Session - BYO topics!

1:30 - 1:50 pm

Visualization capabilities of NeSI's new high performance computers

1:30 - 1:50 pm

A day in the life of NeSI's Apps Support

1:50 - 2:10 pm

NeSI and your data: Scalable storage

1:50 - 2:10 pm

Research Software Engineering (RSE): What's in a name?

Tuesday 19 Feb (cont.)

2:10 - 2:30 pm

Scaling new data services at NeSI

2:30 - 2:50 pm

Insight into the new NeSI platforms

3:30 - 4:30 pm

(Inter)national collaborative research infrastructure strategies BoF

3:30 - 4:30 pm

Research Software Engineering BoF

4:30 - 5:30 pm

Research Cloud NZ BoF

Wednesday 20 Feb

11:10 am - 4:00 pm

Hacky Hour / Bring your own code