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Outline

• Physics: ultra-dilute gases that behave like liquids and 
solids


• How we do what we do: computational physics



Gas… boring and simple right?



Gas… boring and simple right?2 W. KETTERLE, D.S. DURFEE, and D.M. STAMPER-KURN

High
 Temperature T:

Low
Temperature T:

T=Tc:

BEC

T=0:
Pure Bose

condensate

λdB
De Broglie wavelength

λdB=h/mv ∝ T-1/2

v

thermal velocity v

density d-3

d

λdB ≈ d

"Billiard balls"

"Wave packets"

"Matter wave overlap"

"Giant matter wave"

Fig. 1. – Criterion for Bose-Einstein condensation. At high temperatures, a weakly interacting gas can be treated
as a system of “billiard balls.” In a simplified quantum description, the atoms can be regarded as wavepackets
with an extension λdB . At the BEC transition temperature, λdB becomes comparable to the distance between
atoms, and a Bose condensate forms. As the temperature approaches zero, the thermal cloud disappears leaving
a pure Bose condensate.

techniques and experiments performed through the end of 1997. The technique of evaporative cooling is
reviewed in [15]. Refs. [16, 17, 18, 19] are more popular papers, with ref. [18] containing many animated
movies of experimental data and ref. [19] discussing the concept of an atom laser.

1.1. Basic features of Bose-Einstein condensation. – BEC in an ideal gas, described in various text-
books (e.g. [20]), is a paradigm of quantum statistical mechanics which offers profound insight into
macroscopic quantum phenomena. We want to focus here on selected aspects of BEC pertaining to
current experiments in trapped Bose gases.

1.1.1. Length and energy scales. Bose-Einstein condensation is based on the indistinguishability and
wave nature of particles, both of which are at the heart of quantum mechanics. In a simplified picture,
atoms in a gas may be regarded as quantum-mechanical wavepackets which have an extent on the order
of a thermal de Broglie wavelength λdB = (2πh̄2/mkBT )1/2 where T is the temperature and m the mass
of the atom. λdB can be regarded as the position uncertainty associated with the thermal momentum
distribution. The lower the temperature, the longer λdB . When atoms are cooled to the point where λdB is
comparable to the interatomic separation, the atomic wavepackets “overlap” and the indistinguishability
of particles becomes important (fig. 1). At this temperature, bosons undergo a phase transition and form
a Bose-Einstein condensate, a coherent cloud of atoms all occupying the same quantum mechanical state.
The transition temperature and the peak atomic density n are related as nλ3

dB ≃ 2.612.
Bose-Einstein condensation in gases allows for a “first-principles” theoretical description because there

is a clear hierarchy of length and energy scales (table I). In a gas, the separation between atoms n−1/3

is much larger than the size of the atoms (characterized by the s-wave scattering length a), i.e. the
quantity na3 ≪ 1. In a Bose condensed gas, the separation between atoms is equal to or smaller than
the thermal de Broglie wavelength. The largest length scale is the confinement, either characterized by
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But BECs are still gases

BEC

Like a gas - it fills its container laser/magnetic trap 
used to hold the BEC

The container
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Figure 1.5: Numerical simulation of the process to prepare a self-
bound droplet from a trap bound dysprosium condensate. Black lines
indicate contours of the harmonic trap, and colours indicate density
isosurfaces of the condensate. The s-wave scattering length (as) is
reduced over 10ms to bring the system into the (unstable) dipole
dominated regime where a self-bound droplet forms. Subsequently
the trap is turned o↵ and the droplet is seen to cohere. (Figure taken
from [36])

There has been considerable experimental and theoretical activity exploring the

properties of droplets such as their collective modes [32, 38, 30, 39], and methods to

controllably produce single droplets [30, 33] and multiple droplet arrays [40, 41]. We

also note that two component (or binary) condensates of non-dipolar atoms have been

used to produce droplets [42, 43]. In these experiments the two components were

di↵erent spin-states of potassium-39, and the droplets formed when the interspecies

contact interaction was tuned su�ciently attractive.
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Self-bound droplets
meability and m the atomic mass. To observe the self-bound
state, we shape an initially oblate Bose-Einstein condensate17

of 164Dy at large scattering length (BBEC = 7.089(5)G),
where the interaction is contact-dominated, by an additional
optical trap into a prolate shape along the magnetic field di-
rection. This reshaping is done in two stages: first, we ramp
a focussed beam at a wavelength of 532 nm aligned in the z
direction within 50 ms. With this attractive potential the ra-
dial trap frequencies are increased to change the trap aspect
ratio � = !z/!⇢ from 3.9 down to 1.5. Second, we apply a
magnetic field gradient to the atomic cloud to levitate it by
compensating the gravitational force. In this configuration,
the cloud undergoes a continuous crossover from the BEC
state directly into the single droplet ground state when low-
ering the scattering length, bypassing a bistable region4, 18. In
the consecutive 50 ms we lower the field to various values be-
tween B = 6.831(5) � 6.469(5)G, indicated in figure 1b)
as hatched area, to lower the scattering length and create a
single droplet. We hold the atoms in this configuration for
10 ms before ramping the optical trap powers within 20 ms to
⇡ 5 % of their initial values, keeping a constant trap aspect
ratio. At this point we suddently turn off the trap and im-
age the cloud using far-detuned phase-contrast polarization
imaging after various levitation times up to tlevitate = 90ms.
This is schematically shown in figure 1a). Being sensitive
only to high densities, we observe that a thermal fraction ex-
pands very quickly, while a very small and dense cloud re-
mains for very long times. We interpret this as a self-bound
quantum droplet. The size of the quantum droplets is smaller
than our imaging resolution such that we observe astigmatic
diffraction (see figure 2a)). At specific fields, we observe
these droplets for times as long as tlevitate = 90ms. At
some time during the trap-free levitation, we observe that the
droplets have expanded. We interpret this behaviour by the
fact that droplets lose atoms due to three-body decay or evap-
oration of excitations until they reach a critical atom number
below which they are not self-bound anymore and evaporate
back into a gas phase. Given our shot-to-shot noise in the ini-
tial atom number, this critical number is reached for various
times. This behaviour is represented in figure 2a).

As a first analysis we count the images where we
still observe a single droplet out of 100 shots and plot the
survival probability for different magnetic fields in figure
2b) as histograms. The levitation time is changed between
tlevitate = 0ms, which basically represents a trapped cloud,
up to tlevitate = 90ms. We can see that for low scattering
length (B = 6.469(5)G) we always create a single droplet
but the lifetime is short. As the scattering length increases,
the lifetime increases as well. We find a maximal survival
probability for a magnetic field of B = 6.676(5)G. For even
higher scattering lengths we only find droplets at 0ms and
very few self-bound droplets. These histograms are in quali-
tative agreement with an increasing critical atom number and
decreasing atom loss rate in the droplets for increasing scat-
tering length as was observed in reference3 in a waveguide
configuration. However the precise evolution is very depen-
dent on the spread in initial atom number as well as fluctua-
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Figure 2: a) We show two traces of droplets for variable lev-
itation times at the same magnetic field of B = 6.676(5)G.
These images are not multiple images of the same droplet but
rather selected from a variety of images as the imaging pro-
cess is destructive. All images are rescaled to the maximum
optical density. In the first column we start with an atom
number much larger than the critical atom number for stable
droplets and observe a single droplet up to tlevitate = 70ms.
Between 70 - 90 ms the cloud reaches the critical atom num-
ber and evaporates back to a gas phase, observed as an ex-
panding cloud. In the second column we show a droplet
that starts with an atom number much closer to the criti-
cal atom number leading to an earlier evaporation, already
between 20 - 50 ms of levitation time. From this point the
cloud evaporates to the BEC phase and expands. b) His-
togram of the surviving probability of a single droplet as
function of levitation time and magnetic field. At low scat-
tering length (B = 6.469(5)G) we always observe droplets
for up to tlevitate = 30ms, followed by a fast decay which
is explained by fast atom number decay due to three-body
collisions. For increasing scattering length we observe an in-
crease of the lifetime of these droplets up to a magnetic field
of B = 6.676(5)G. At these conditions we observe a single
droplet of a size below our resolution after a levitation time
of tlevitate = 90ms. Further increase of the scattering length
shows a fast decay of self-bound droplets already for short
times (tlevitate = 20ms) which we interpret as originating
from an increase of the critical atom number to values close
to our initial atom number. For the highest scattering length
(B = 6.831(5)G) we barely create droplets in the trap.

tions in the critical atom number.

To obtain a more quantitative analysis of the critical
atom number of these droplets we intentionally evaporate
them after variable levitation times by increasing the mag-
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reduced over 10ms to bring the system into the (unstable) dipole
dominated regime where a self-bound droplet forms. Subsequently
the trap is turned o↵ and the droplet is seen to cohere. (Figure taken
from [36])
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and the dipoles are polarized along z. This choice is a good approximation to the motivating ex-

periments reported in Ref. [19], and affords a more efficient and accurate solution for the ground

states.

Within a local density treatment of the quantum fluctuations we can introduce a generalized

time-dependent Gross-Pitaevskii equation [38]
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is the single particle Hamiltonian including a harmonic confinement potential with trapping fre-

quencies {!⇢,!z}, where ⇢ =
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x2 + y2 is the radial coordinate. The two-body interactions

between atoms are described by the pseudo-potential [4]

U(r) = g�(r) +
µ0µ2
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, (3)

where g = 4⇡as~2/m, with as being the s-wave scattering length. The long-ranged DDI term

is for dipoles of magnetic moment µ polarized along z with ✓ being the angle between r and the

z-axis.

FIG. 1. (color online) The quantum fluctuation parameter �QF for each species is indicated for (solid line)

164Dy and (solid line with symbols) 168Er cases as a function of as (where a0 is the Bohr radius). The

values where ✏dd = 1 for each species are indicated by small red boxes.

The last term in Eq. (2) accounts for the quantum fluctuations. In a homogeneous dipolar

condensate quantum fluctuations are predicted to shift the chemical potential, a correction of the

form �µ = �QFn3/2 [32], where n is the density. The quantum fluctuation parameter �QF is

determined by the excitation spectrum, and thus depends on both the contact and DDIs. Making

the local density approximation by setting n ! n(r) = | (r)|2 yields the term appearing in our

generalized GPE. Some evidence for the applicability of the fluctuation term [as used in Eq. (2)]

in the regime of (HDP) droplet ground states has been provided by recent path-integral Monte

Carlo calculations [27] for cases with ⇠ 103 atoms. More such studies, particularly at larger

numbers are necessary to assess the accuracy of the this treatment over a broader parameter regime

relevant to experiments. The general validity requirement for including quantum fluctuations in
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The last term in Eq. (2) accounts for the quantum fluctuations. In a homogeneous dipolar

condensate quantum fluctuations are predicted to shift the chemical potential, a correction of the

form �µ = �QFn3/2 [32], where n is the density. The quantum fluctuation parameter �QF is

determined by the excitation spectrum, and thus depends on both the contact and DDIs. Making

the local density approximation by setting n ! n(r) = | (r)|2 yields the term appearing in our

generalized GPE. Some evidence for the applicability of the fluctuation term [as used in Eq. (2)]

in the regime of (HDP) droplet ground states has been provided by recent path-integral Monte

Carlo calculations [27] for cases with ⇠ 103 atoms. More such studies, particularly at larger

numbers are necessary to assess the accuracy of the this treatment over a broader parameter regime

relevant to experiments. The general validity requirement for including quantum fluctuations in
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Nonlinear differential 
equations

• Droplet crystals are solutions of the dipolar Gross-
Pitaevskii equation (nonlinear eigenvalue equation)
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I. INTRODUCTION
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Spectral methods
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8 (Mx � 1)3 points (i.e. 2 (Mx � 1) points in each direction 1), i.e.

G↵�� =
X

i jk

wiw jwkP↵��(x̃i, x̃ j, x̃k), (A19)

where x̃i and wi are the 2 (Mx�1) roots and weights of the 1D Gauss-Hermite quadra-
ture with weight function w(x̃) = exp(�2x̃2) [3]. Note, the due to the isotropy of the
trapping potential, the quadrature grids in all spatial directions are identical.

A.6 Overview of numerical procedure

Figure A1. Schematic of numerical procedure to evaluate the nonlinear matrix elements G↵��.

Here we briefly overview how the quadrature described above can be e�ciently
implemented numerically. We require the transformation matrices, given by 1D basis
states evaluated on the quadrature grid, i.e.

Ui↵ = '̃↵(x̃i), (A20)

to be pre-calculated. Starting from the basis set representation of the field (i.e. {c↵��})
at an instant of time t̃, the steps for calculating the matrix elements are as follows
(also see figure A1):

(i) Transform from spectral to spatial representation:

 ̃C(x̃i jk, t̃) =
X

{↵��} 2C

Ui↵U j�Uk� c↵��(t̃), (A21)

1Since a polynomial of degree 2N � 1 is integrated exactly using an N-point quadrature.
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• Very specialised :( 

Key to accurate answers (e.g. >5SF) and tractable calculations in 3D
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Code
• Group members write bespoke code for their research projects. 


• Most code written in MatLab


• Good for development and execution in single node environments


• Surprisingly (?) good performance on GPUs


• Supported on NeSI via Otago Site licence



Hardware Performance*
Time (s)

Mahuika Tesla P100 GPU 
CPU 12 Cores
CPU 24 Cores
CPU 36 Cores

25 
230

165

154

iMac Pro CPU 8 Cores 180

Thunderbirds

(Otago Cluster) 3.3GHz CPU 10 Cores


2.7GHz CPU 6 Cores


Titan Black GPU

Titan V GPU

181

195


35

13

Titan V 
Volta architecture 

12GB HBM2 
5120 CUDA cores 

~$3k USD

*Tentative numbers from a test 
3D GPE evolution 192×192×192 size
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*Tentative numbers from a test 
3D GPE evolution 192×192×192 size
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Conclusion
• Quantum physics research is a 

niche user of HPC resources in 
NZ


• Our students are in demand in 
“big data” for their modelling, 
visualization, analysis and 
coding expertise.


• MORE GPUs!!!!!!

33%

33%

33%Representations 
(basis/quadrature)

Algorithms 
(iterative solvers,  

symplectic integrators, …)

Hardware 
(memory, GPUs …)


