
Exploiting the Node: OpenMP for
All?

Barbara Chapman
Stony Brook University

Brookhaven National Lab

http://www.exascaleproject.org/

Jaguar: 2.3 PF
Multi-core CPU
7 MW

Titan: 27 PF
Hybrid GPU/CPU
9 MW

20
10

20
12

20
17

20
22

OLCF5: 5-10x Summit
~20 MW

Summit: 5-10x Titan
Hybrid GPU/CPU
10 MW
CORAL
System

•
•
•

C C C C C C

Bus or Switch Network

•
•
•

C C C C C C

Bus or Switch
Network

☺

•
•
•
•

•

Name Titan Mira Cori Theta Summit Sierra Perlmutter
System peak
(PF)

27 10 Haswell: 2.81
KNL: 29.5

11.69 200 125

Peak Power
(MW)

9 4.8 4.2 1.7 13.3 6

Total system
memory

710TB 768 TB Haswell:
298.5 TB DDR4
KNL: 1.06 PB
DDR4 +
High Bandwidth
Memory

1475 TB:
843 DDR4 +
70
MCDRAM +
562 SSD

2.8 PB:
DDR4,
HBM2,
PB persistent,
memory

1.4 PB
DDR4,
HBM2,
PB persistent,
memory

Node
performance
(TF)

1.452 0.204 Haswell: 1.178
KNL: 3.046

2.66 >40

Node
Processors

AMD
Opteron
NVIDIA K20x

64-bit
PowerPC
A2

Intel Haswell
Intel KNL

Intel KNL 2 POWER9
6 NVIDIA
Volta GPUs

2 POWER9
4 NVIDIA
Volta GPUs

AMD EPYC
(Milan)
NVIDIA GPU

System Size
(nodes)

18,688
nodes

49,152 Haswell; 2,388
nodes
KNL: 9,688 nodes

4,392 nodes ~4600 nodes 4320 > 4000 node
CPU-only
partition

System
Interconnect

Gemini 5D Torus Aries Aries Dual Rail
EDR-IB

Dual Rail
EDR-IB

Cray
Slingshot

File System 32 OB
1 TB/s
Lustre

26 PB
300 GB/s
GPFS

28 PB
>700 GB/s
Lustre

10 PB
744 GB/s
Lustre

120 PB
1 TB/s
GPFS

30 PB
4 TB/s
Lustre

Accelerated node

// Run one OpenMP thread per device per MPI node
#pragma omp parallel num_threads(devCount) if (initDevice())
 {

// Block and grid dimensions
dim3 dimBlock(12,12);
kernel<<<1,dimBlock>>>();
cudaThreadExit();

}
else
{

printf("Device error on %s\n",processor_name);
}

MPI_Finalize();
return 0;

}

ECP

•

•

•

•
•
•

•

•

•
•
•

–
–
–
–

12

•
•

•
•
•
•

•
-

•
-

•
-

•
-

Practical: requires
robust

implementations
and an ecosystem

A pot full of “P”s – we also strive for Productivity

Interoperability
among existing

programming models

Fault-tolerant MPI

Standard programming
model for

heterogeneous nodes

System-wide high-level
programming model

Exascale programming
models implemented

Exascale programming
model(s) adopted

Candidate exascale
programming models

defined

•

•
–

–

•

●

●

●

●

●

•

•
–
–

•

•

•

•
•

–

•
–

–
•

–
–
–

http://arxiv.org/abs/1512.03487

•
–

•
–

•
•

–
–
–

•

–

Portable parallel
programming since 1997

•
•

•
•

•

•

•

•

•
–
–

GPU(s)Xeon Phi(s) –
(Accelerator and self-hosted)

Host Device
(CPU Multicore)

Single device attached
Multiple devices attached

With attached
accelerator(s)

..
!$omp target map(to:u) map(from:uold)

!$omp teams distribute parallel do collapse(2)
 do j=1,m
 do i=1,n
 uold(i,j) = u(i,j)
 enddo
 enddo

!$omp end target
..

An example of OpenMP 4.5 for accelerators

Device

initialize device
allocates: u, uold on device data environment
copies in: u

copies out: uold
deallocates: u, uold

host thread

host thread

barrier

Execute target
code

!$omp teams distribute

initial device thread

 Executed on
 the device

Use target construct to:
• Transfer control from the host to the target device
• Map variables to/from the device data environment

Host thread waits until target region completes
• Use nowait for asynchronous execution

!$omp parallel do

#pragma omp target teams distribute parallel for
for (j=0; j<N; j++)
 a[j] = b[j] + scalar*c[j];

Sometimes additional tuning
is needed:
• Clang-7.0.0: requires

“schedule(static,1)”
• GCC-8.2.0: must add the

“simd” construct

Recommended combination
of OpenMP directives:

Transpose benchmark: tiled loops and
use of the OpenMP “collapse” clause

Laplace equation benchmark: frequent
kernel launches and data reductions

Slow OpenMP
reduction

•

•

Results from: Rahulkumar Gayatri, "A Case Study for
Performance Portability Using OpenMP 4.5", WACCPD-18

The OpenMP implementation with XL compiler achieves
approximately the same run time as a tuned CUDA
implementation

• Exploring OpenMP for on-node parallelism
• Offload programming to exploit GPUs
• Performance portability is needed
• Also considering other approaches

Key problem areas:
–Performance Portability

• Between CPU and GPU
• SIMD performance varies

–OpenMP / Libraries
•Nested parallelism
•Affinity control

–Deep copy needed
•Vector of vectors classes
•Shadow data handling

–Exposing GPU queues/streams
•Library interoperability

NiO with 128, 256, 512 atoms, namely 1536, 3072 and
6144 electrons are studied.

Summit

Preliminary Diffusion Kernel via miniQMC

Co-design interactions:
• #pragma omp loop
• BOLT runtime for nested

parallelism
• Meta directive to generate

customized directives and
transform loops by
compilers

• Custom Mappers for
Deep copy

• Prototype for exposing
streams in OpenMP 5.1

•

•
–

•
–

•
•

•

•

Aaron B. Adcock, Blair D. Sullivan, Oscar R. Hernandez, and Michael W. Mahoney. 2013.
Evaluating OpenMP tasking at scale for the computation of graph hyperbolicity. In OpenMP

in the Era of Low Power Devices and Accelerators. Lecture Notes in Computer Science, Vol. 8122.
Springer, 71--83.

•

•

•
•
➢
➢
➢

•
•
•

•
• omp task depend

➢

• omp task

•
➢
➢
➢
➢

••
➢
➢

o

•
➢

•
➢
➢

•
➢
➢
➢

o

o

•
➢ cudaMalloc()

•
➢

•
–

•
–
–
–

•
–
–

•
–
–

•
–

•
–

•
–
–

•
–

•
–

•
–
–

•
–

•

•
–
–
–
–
–

•
–

•

• OpenMP 5.1 will be released in November 2020
- Proceedings of the IEEE article: “The Ongoing Evolution of OpenMP”

- Broadly support on-node performant, portable parallelism

- OpenMP 5.1 will refine how OpenMP 5.0 realizes it, will not break existing code

• Clarifications, corrections possibly minor extensions

- Improved native device support (e.g., CUDA streams)

- May add taskloop dependences

- Address issues arising from detailed implementation and use of OpenMP 5.0

• Plan is to release OpenMP 6.0 in November 2023

• Deeper support for descriptive and prescriptive control

• More support for memory affinity and complex hierarchies

• Support for pipelining, other computation/data associations

• Continued improvements to device support
- Extensions of deep copy support (serialize/deserialize functions)

• Task-only, unshackled or free-agent threads

• Event-driven parallelism

• Completing support for new normative references

•
•
•
•

•

•

•
•
•
•
•

http://openmp-ecp.ornl.gov/

OpenMPCon 2019 & IWOMP 2019
OpenMP Developers Conference 2019 &
15th International Workshop on OpenMP

OpenMPCon: 9th-10th September, 2019

Tutorial: 11th September, 2019
IWOMP:12th -13th September, 2019

In Auckland, New Zealand

IWOMP 2019

OpenMPCon 2019
http://parallel.auckland.ac.nz/openmpcon2019/
9th -10th September, 2019 in Auckland, NZ

IWOMP 2019
http://parallel.auckland.ac.nz/iwomp2019/
12th -13th September, 2019 in Auckland, NZ

General Chair
Dr. Oliver Sinnen
PARC lab
Department of Electrical and Computer Engineering
University of Auckland
o.sinnen@Auckland.ac.nz

OpenMPCon 2019

mailto:o.sinnen@Auckland.ac.nz

•
•

– …
– …
– …

•
-
-

