

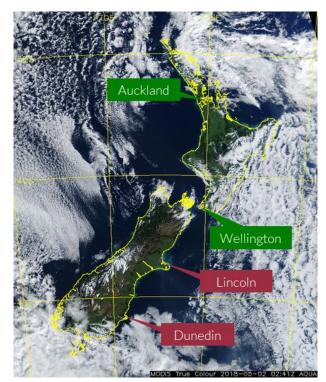
The NeSI HPC Compute and Data Analytics Service:

New Systems, Capabilities & Science

Michael Uddstrom (Platforms Manager) Blair Bethwaite (Solutions Manager)

New Zealand eScience Infrastructure

Design Choices (NIWA + NeSI Co-investment)


- National data-centric research and operational computing environment:
 - Single site: NIWA Greta Point, Wellington;
 - HPC Cluster: Low core count jobs
 - Supercomputer: Large core count jobs & NIWA forecasting;
 - GPGPUs;
 - DTN service;
 - Shared (large) high performance filesystems;
 - Secure (MFA).

New user services:

- Virtual Labs (interactive access to data);
- Remote visualisation;
- Private cloud;
- Advanced data analytics;
- Librarian (move data to, and from offline).

Disaster Recovery:

- Copy of NeSI research data and backups;
- NIWA Supercomputer.

Reprising last year's: Next Steps

- "Predictions" upgrade (Housing, Power, Cooling) 28-Feb-2018 26-Feb-2018 Begin install of Mahuika and Maui Acceptance Testing, Configuration and Tailoring 31-Mar-2018 Target to Transition all users (Pan, Kupe) to HPCF 01-May-2018 Implement HPC Compute and Analytics Service design 01-May-2018√ Fit for purpose website content: Providing prospective users with relevant information. https://support.nesi.org.nz Improved project application, review and allocation management;
 - New services:

Deeper user support;

» Virtual Workstations/Labs, Remote Visualisation, Hybrid Cloud, HSM, etc.

High Performance Computing Facility

Databases

20 Gb/s

HSM

FC

Tamaki Data Centre NIWA/NeSI - Greta Point **XC50 Capability IBM TS4500 XC50 Capability CS400 (EDR) CS400 Capacity IBM TS3500** (Kupe) (Offline Storage) (Mahuika) (Maui) (Offline Storage) (Shared Services) Compute Tape Library Compute Compute Tape Library SLURM NIWA/NeSI shared ITO7 NIWA/NeSI shared LTO6 DTN CS400 Test Cluster LT08 Protocol Nodes ELK CS500 (EDR) CS400 (FDR) CS500 (EDR) FreeIPA **Ancillary Nodes Ancillary Nodes Ancillary Nodes** Ansible Tower Large & Huge memory Large memory Large memory Web servers etc... **GPGPUs GPGPUs GPGPUs REANNZ IBM S822L Storage IBM ESS Storage IBM Spectrum IBM ESS Storage IBM Spectrum Bright OpenStack** Persistent Persistent **Protect Protect** Scratch Scratch Logs Bachup Bachup

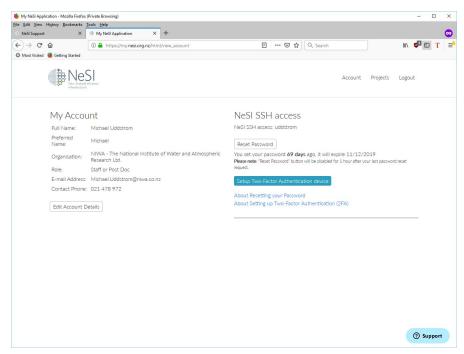
Operational

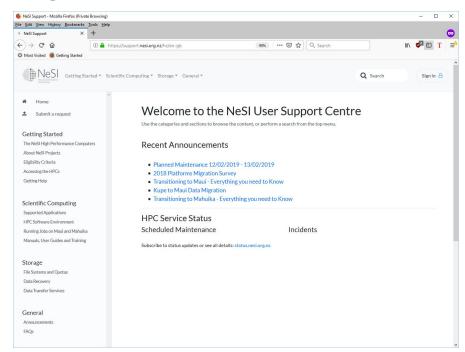
HSM

EDR

Operational

High Performance Computing Facility


Mahuika (9,064 BRW cores) Maui_Ancil (1,120 SKL cores) IBM ESS Shared Storage 10.1PB (~150GB/s)

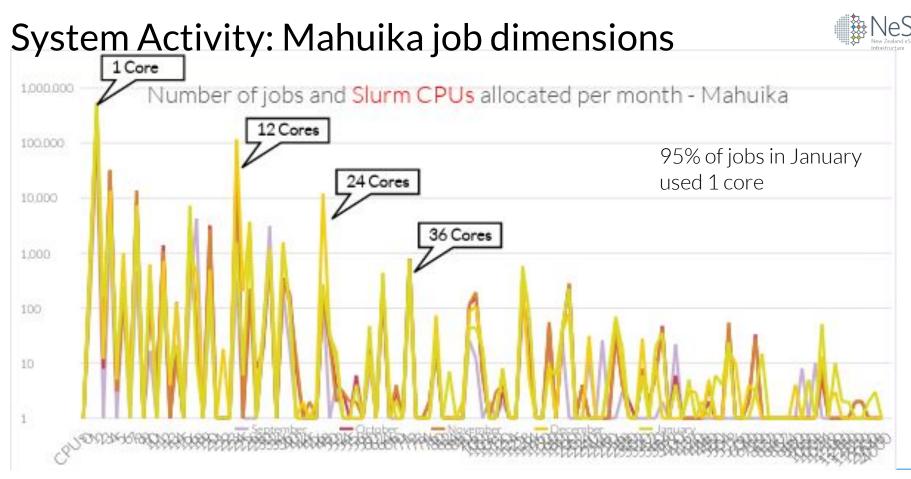

Maui (18,560 SKL cores) (1.4 PF)

New NeSI Access & Support Pages

https://my.nesi.org.nz

https://support.nesi.org.nz

NeSI HPC (X86) Compute Resources (per

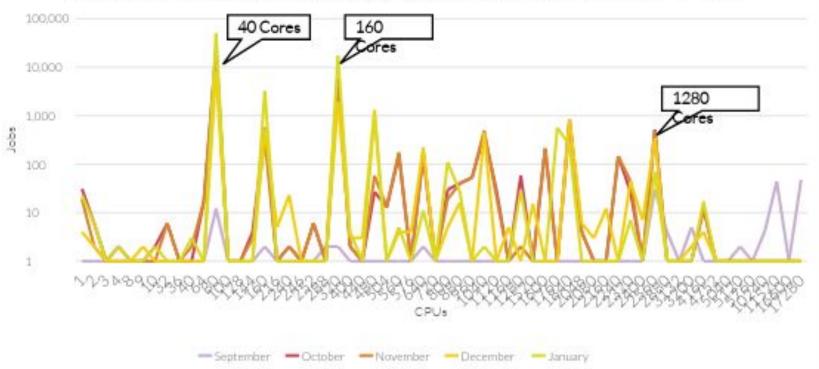

Allocation Class	Mahuika (excluding cloud) (core-hs)	Mahuika (cloud) (core-hs)	Mahuika (Ancillary Nodes) (core-hs)	Maui (node-hs)	Maui (Ancillary nodes) (node-hs)
Merit Proposal Development Post Graduate	12,580,834	504,922	1,122,048	362,870	1,122,048
Subscription	12,580,834	504,922	1,122,048	362,870	1,122,048
Collaborator	37,742,399	1,514,764	3,366,144	1,088,611	3,366,144
Total (core-hs)	62,904,067	2,524,608	5,610,240	75,574,040	5,610,240

NeSI HPC (GPU) Compute Resources (per

Allocation Class	Mahuika (GPU-hs)	Maui (GPU-hs)	Comment
Merit Proposal Development Post Graduate	13,736	8,585	1 × GPU-h is equivalent to 3,584 Cuda Core-hours.
Subscription	13,736	8,585	
Collaborator	41,206	25,754	
Total (GPU-hs)	68,678	42,924	Equivalent to 400 million Cuda Core-hs per annum

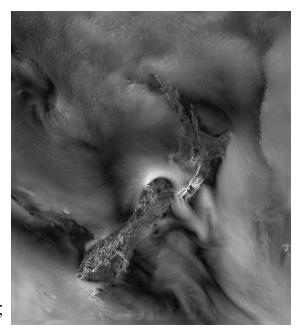
- Resources: https://support.nesi.org.nz/hc/en-gb/articles/360000201756-Total-HPC-Resources-Available
- Pan & Mahuika compared: https://support.nesi.org.nz/hc/en-gb/articles/360000204715-Pan-Mahuika-Compared
- FitzRoy & Maui compared: https://support.nesi.org.nz/hc/en-gb/articles/360000204855-FitzRoy-M%C4%81ui-Compared-

System Activity: Mahuika



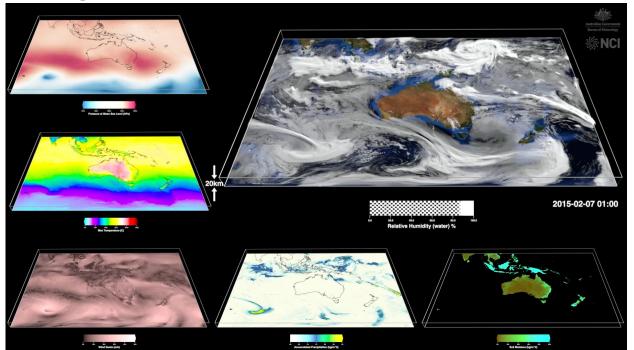
- Some points to note:
 - On Mahuika all but the huge memory node have 2 × 18 core sockets (i.e. 36 cores);
 - Hyperthreading is enabled ⇒ Slurm can schedule 72 Slurm CPUs per node;
 - On Mahuika base compute nodes have ~100GB of memory available;
 - » Users typically request 50% more than they use
 - On Maui the equivalent values are 20, 40 and 80.
- On Pan hyperthreading was disabled and nodes had 12, 16, (20) and 24 cores;
- It looks like job scripts may not have been updated to reflect the new processors.

System Activity: Maui



Why a Supercomputer to Forecast the Weather?

Weather of numerical weather prediction (NWP) is to predict the future state of the atmosphere given:


- Observations of its current state;
- An atmospheric simulation model: a set of numerical approximations to a closed set of equations that govern atmospheric motion
- The NZCSM NWP model (1.5 km grid, convection resolving)
 - 567,000,000 locations/variables at every timestep;
 - Dynamics timestep = 60 sec:
 - \rightarrow 1.43 x 10¹² calculations for a 42 h forecast (dynamics only);
- Cray XC50 1240 cores, 110 min

Preparing for the future... First Look Back

More than 500TB of data (and counting)

Credit: Drew Whitehouse (NCI) - BARRA-R simulation of cyclone Yasi in Jan 2011

Virtual Laboratories – what are they?

- New feature of the HPC and Data Analytics Service;
- Project-specific dedicated and persistent interactive environments;
- Native (high-performance) access to HPC filesystems;
 - Single stream access: 5(W) 6(R) GB/s (Aggregate Bandwidth 150 GB/s)
- Tightly integrated:
 - Identity and Access Management;
 - Software;
 - Filesystems;
 - HPC job submission and management;
 - But no superuser.
- Delivered via OpenStack with scalable capacity that can grow/shrink over cluster ancillary nodes (i.e., everything not a standard compute node)

Virtual Laboratories – why?

- Exploratory Data Analysis, and development:
 - Remove resource hungry workloads away from shared login nodes;
 - (May be) Scientific domain specific.
- HPC facing persistent services e.g. databases;
- HPC workflows triggered by external data ingest and event processing;
- Computational steering and workflows;
- Remote visualisation.

Virtual Laboratories – I want one!

- We are still developing and refining the delivery model...
- For now please contact NeSI support (in future they will be available through my.nesi);
- No self-service option yet possible future addition depending on use-cases and interest;
- Initial NeSI pilot VLs underway working on NWA, Genomics Aotearoa and Manaaki Whenua Landcare Research use-cases
- Looking for more willing beta users!

Reminder: "Good Things" take time....

- 2016
 - National Frameworks Review approved: 03/16
 - Co-Investment: NIWA \$15.5M; UoA+UoO+MWLR \$4.8M
 - Collaborative (NeSI/NIWA design process)
 - One RFP for 3 HPCs released: 12/16
- 2017
 - Cray awarded contract: 07/17
 - NIWA's Kupe system operational: 12/17
- 2018
 - Pan and FitzRoy replacements accepted: 03/18
 - Operational service available: 08/18 & 09/18
- 2 years 6 months (1 year from Contracting to Operations)

Summary

- The NZ research community has access to leading edge HPC and Supercomputer resources.
 - Providing access to services equivalent or better than any of our international collaborators
- The Platforms and HPC Compute and Data Analytics Service refresh has delivered
 - >10× more compute performance
 - 20 to 150× more filesystem performance
- New services
- Already we are seeing new science results (e.g. QuakeCore, NZESM)
- Via NIWA the ability to deliver resilient 24 x 7 operational services

NeSI @ eResearch NZ - Talks & Workshops:

Monday 18 Feb

2:10 2:30 pm Understanding research drivers for NZ's advanced research computing

2:30 2:50 pm How NeSI helps Manaaki Whenua Landcare Research monitor land cover changes

3:30 3:50 pm NeSI Futures

4:30 5:30 pm Training Community BoF

4:50 5:10 pm Catering to domain (Genomics) specific eResearch needs

Tuesday 19 Feb

11:00 - 11:20 am - The NeSI HPC Compute and Data Analytics Service

11:00 am - 12:30 pm - Open Space Session - BYO topics!

11:20 am - 11:40 am - Deploying a Globus endpoint in an NZ institution

1:30 - 1:50 pm - Visualization capabilities of NeSl's new high performance computers

1:30 - 1:50 pm - A day in the life of NeSI's Apps Support

1:50 - 2:10 pm - NeSI and your data: Scalable storage

1:50 - 2:10 pm - Research Software Engineering (RSE): What's in a name?

Tuesday 19 Feb (cont.)

2:10 - 2:30 pm - Kicking On: Scaling new data services at NeSI

2:30 - 2:50 pm - Insight into the new NeSI platforms

3:30 - 4:30 pm - (Inter)national collaborative research infrastructure strategies BoF

3:30 - 4:30 pm - Research Software Engineering BoF

4:30 - 5:30 pm - Research Cloud NZ BoF

Wednesday 20 Feb

11:10 am - 4:00 pm - Hacky Hour / Bring Your Own Code Workshop