Current and Future directions for HPC at Pawsey Supercomputing Centre

Ugo Varetto and Mark Gray

The Pawsey Supercomputing Centre is an unincorporated joint venture between

and proudly funded by

Pawsey Supercomputing Centre

Supporting Australian Researchers

MAKING TOMORROW HAPPEN, TODAY

National Reach

35,712 cores, 1.09 PFLOPS, Aries dragonfly interconnect Magnus Supercomputer

9,440 CPU cores 64 K20X GPUs Aries dragonfly interconnect PAWSE

Galaxy Supercomputer

Zeus Supercomputer

36

20 visualization nodes 44 Pascal GPUs for GPU computing 80 Xeon Phi nodes for manycore jobs 1 TB large memory nodes 2,240 CPU cores for serial codes FDR/EDR Infiniband interconnect

sgi

sgi

DataDirect

supercomputing centre

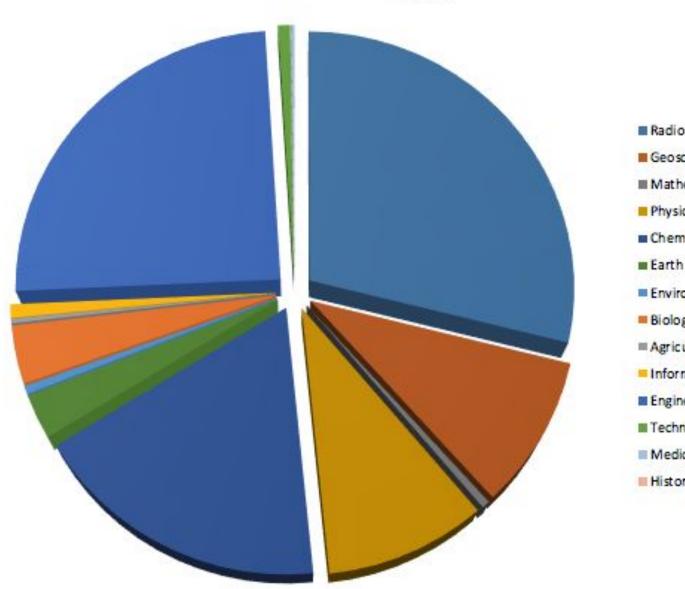
sgi

sgi

D

3000 Cores, OpenStack, Sahara, Volta GPUs Nimbus Research Cloud

A


65 PB Migrating Disk and Tape

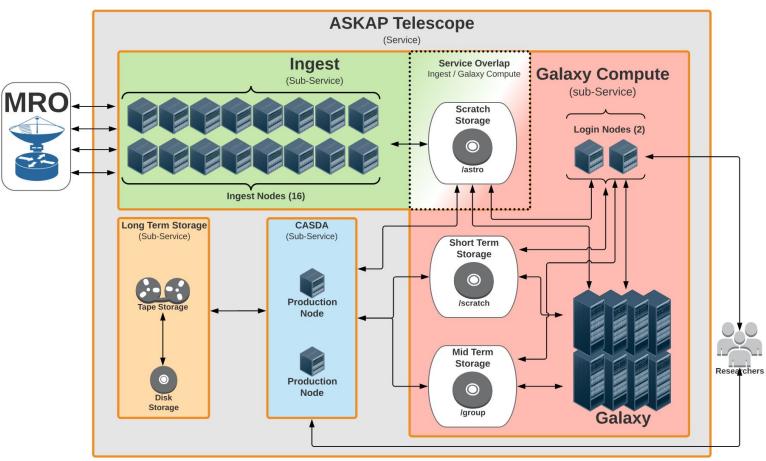
Data Storage

1: 10

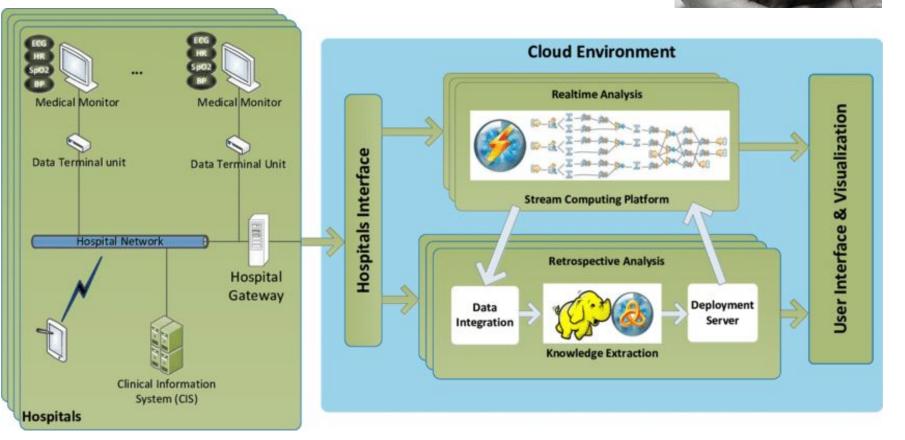
Usage by science domain

Radio Astronomy Geosciences Mathematical Sciences Physical Sciences (exc. radio astro) Chemical Sciences Earth Sciences (exc. Geosciences) Environmental Sciences Biological Sciences = Agricultural And Veterinary Sciences Information And Computing Sciences Engineering Technology Medical And Health Sciences History and Archaeology

2019


Allocation per institution

Real-time data ingest


ASKAP TELESCOPE SERVICE

Real-time data ingest

ARTEMIS: A neonatal Internet of Things.

Capital Investment Status

- Currently at the start of a \$70 million capital refresh
- Approximately 2/3 for compute, 1/3 for storage and network
- A few small procurements soon out to market (storage, network, cluster, cloud, visualisation)
- Collaborations started or about to start with a number of institutions

Future of HPC

- Unified model:
 - From HPC, Cluster, Cloud

 Converged architecture
 - Software defined infrastructure
- Science from data
- Machine intelligence:
 - Machine learning
 - Al-augmented scientific simulations
- Synergies: solve large scale science problems collectively (e.g. SKA, LHC)

Future of HPC

- Integrated workflows
- New scientific domains:
 - Genomics
 - Phenomics
 - Medical Informatics
 - Advanced Imaging (including medical)
- Dynamic, on-demand, real-time job scheduling
- Security, handling of sensitive data

Challenges

- Our scientific community is a diverse group
- Communication
- Data intensive science
- Quasi real time HPC
- On demand compute may need to "burst"

Challenges

- Storage: how can we support growth?
 - Funding
 - Physical space
 - Bandwidth
- Data privacy and security
- Heterogeneous workloads
- Data Management
 - no scalable data management solution currently implemented
- Development
 - Support for flexible, on-demand, workloads beyond simple batch scheduling
- Quality of service
 - Regressions
 - Uptime
 - Consistency of environment and applications across maintenance sessions
 - Consistent performance

Solutions (?)

- Storage
- Heterogeneous
 workflows
- Data Management
- Development workloads
- Security
- Quality of Service

- Hybrid cloud
- Federation
- Workflow mgmt.
- Interactive Vis.
- RUCIO
- Meerkat
- SchedMD/Elastic
 workloads
- Smart contracts/blockchain
- Re-frame
- Ganglia
- Containers
- Secondment

Questions?

